

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 3rd Semester Examination, 2021

CC7-PHYSICS

DIGITAL SYSTEMS AND APPLICATIONS

Time Allotted: 2 Hours

Full Marks: 40

 $1 \times 5 = 5$

5

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

- 1. Answer any *five* questions from the following:
 - (a) Convert $(11000101)_2$ to hexadecimal.
 - (b) Represent (-58) in 2's complement scheme.
 - (c) Convert the Gray code 1101 to binary code and $(1010)_2$ to Gray code.
 - (d) Justify: Compliment of XNOR is XOR.
 - (e) Write "89" in 8 bit BCD.
 - (f) Draw the state transition diagram for a MOD-10 counter.
 - (g) Draw the output waveform of an astable multivibrator whose duty cycle is 75%.
 - (h) Distinguish between Latches and Flip-Flops.

GROUP-B

Answer any *three* questions from the following $5 \times 3 = 15$

- 2. Design a full-adder circuit using only NAND gate.
- 3. Draw the logic symbol 4:1 multiplexer. Find its output equation and realise the 1+2+2 equation using gates.
- 4. For a given logic equation f(A, B, C) = AB + C: $2\frac{1}{2} + 2\frac{1}{2}$
 - (i) Make a truth table
 - (ii) Realise the circuit for the given equation using only NAND gates.
- 5. (a) How many flip-flops are required to build a binary counter that count from 0 2 to 1023?

1

UG/CBCS/B.Sc./Hons./3rd Sem./Physics/PHYSCC7/2021

(b) Determine the frequency at the output of the last flip-flop of this counter for an	2+1
input clock frequency of 4 MHz. What is counter's MOD number?	

5

6. Construct an even parity checker circuit and explain the working principle.

GROUP-C

		Answer any two questions from the following	$10 \times 2 = 20$
7.	(a)	Draw the circuit of 4:1 MUX and 1:4 DEMUX. How to make a 8:1 MUX using two 4:1 MUXs.	2+2+3
	(b)	What are the main difference between the demultiplexer and decoder? When a demultiplexer can be used as decoder?	2+1
8.		What is the race around condition of a J-K flip-flop? Why does it occur? How it is resolved? Construct and explain the working principle of Master-Slave JK flip-flop with the help of timing diagram. What are the uses of Master-Slave JK flip-flop?	2+1+1 +5+1
9.	(a)	Draw the circuit diagram of a 4-bits serial input parallel output shift register when 4-bit output data will appear at the output simultaneously. Explain its operation with the help of timing diagram.	2+3
	(b)	What are the main disadvantages of asynchronous counter? Draw the circuit of a MOD-6 synchronous counter. Explain its counting pattern with state-transition diagram.	1+2+2
10).(a)	Build up a unit RAM-cell using R-S flip-flop. Explain the working principle on storing 1-bit data into the cell and reading data from the cell.	5
	(b)	Design a monostable multivibrator using 555-timer IC with on-time of unstable state T is one sec.	2
	(c)	Explain with circuit diagram the operation of an astable multivibrator.	3

____×____